Lecture 15

Fluorescence spectroscopy and imaging: Basic principles and sources of contrast

Outline for Fluorescence

- I. Principles of Fluorescence
- II. Quantum Yield and Lifetime
- III. Fluorescence Spectroscopy
- IV. Biological Fluorophores
- V. Fluorescence Instrumentation
- VI. Fluorescence Measurements

1. Luminescence

- Emission of photons from electronically excited states
- Two types of luminescence:
 - Relaxation from singlet excited state Relaxation from triplet excited state

2. Singlet and triplet states

- Ground state two electrons per orbital; electrons have opposite spin and are paired
- Singlet excited state
 - Electron in higher energy orbital has the opposite spin orientation relative to electron in the lower orbital

• Triplet excited state

The excited valence electron may spontaneously reverse its spin (spin flip). This process is called intersystem crossing. Electrons in both orbitals now have same spin orientation

3. Types of emission

- Fluorescence return from excited singlet state to ground state; does not require change in spin orientation (more common of relaxation)
- Phosphoresence return from a triplet excited state to a ground state; electron requires change in spin orientation
- Emissive rates of fluorescence are several orders of magnitude faster than that of phosphorescence

I. Principles of Fluorescence 4. Energy level diagram (Jablonski diagram)

5a. Fluorescence process: Population of energy levels

• At room temperature (300 K), and for typical electronic and vibration energy levels, can calculate the ratio of molecules in upper and lower states

$$\frac{n_{upper}}{n_{lower}} = \exp\left(-\frac{\Delta E}{kT}\right)$$

k=1.38*10⁻²³ JK⁻¹ (Boltzmann's constant) ΔE = separation in energy level

Energy

S1

5b. Fluorescence process: Excitation

- At room temperature, everything starts out at the lowest vibrational energy level of the ground state
- Suppose a molecule is illuminated with light at a resonance frequency
- Light is absorbed; for dilute sample, Beer-Lambert law applies $A = \varepsilon cl$ where ε is molar absorption (extinction) coefficient (M⁻¹ cm⁻¹); its magnitude reflects probability of absorption and its wavelength dependence corresponds to absorption spectrum
- Excitation following light absorption, a chromophore is excited to some *higher* vibrational energy level of S_1 or S_2
- The absorption process takes place on a time scale (10^{-15} s) much faster than that of molecular vibration \rightarrow "vertical" transition (Franck-Condon principle).

5c. Fluorescence process: Non-radiative relaxation

- In the excited state, the electron is promoted to an anti-bonding orbital→ atoms in the bond are less tightly held → shift to the right for S₁ potential energy curve →electron is promoted to higher vibrational level in S₁ state than the vibrational level it was in at the ground state
- Vibrational deactivation takes place through intermolecular collisions at a time scale of 10⁻¹² s (faster than that of fluorescence process)

I. Principles of Fluorescence 5d. Fluorescence process: Emission

- The molecule relaxes from the lowest vibrational energy level of the excited state to a vibrational energy level of the ground state (10⁻⁹ s)
- Relaxation to ground state occurs faster than time scale of molecular vibration → "vertical" transition
- The energy of the emitted photon is lower than that of the incident photons

6a. Stokes shift

- The fluorescence light is <u>red-shifted</u> (longer wavelength than the excitation light) relative to the absorbed light ("Stokes shift").
- Internal conversion (see slide 13) can affect Stokes shift
- Solvent effects and excited state reactions can also affect the magnitude of the Stoke's shift

6b. Invariance of emission wavelength with excitation wavelength

- Emission wavelength only depends on relaxation back to lowest vibrational level of S₁
- For a molecule, the same fluorescence emission wavelength is observed irrespective of the excitation wavelength

6c. Mirror image rule

- Vibrational levels in the excited states and ground states are similar
- An absorption spectrum reflects the vibrational levels of the electronically excited state
- An emission spectrum reflects the vibrational levels of the electronic ground state
- Fluorescence emission spectrum is mirror image of absorption spectrum

6d. Internal conversion vs. fluorescence emission

- As electronic energy increases, the energy levels grow more closely spaced
- It is more likely that there will be overlap between the high vibrational energy levels of S_{n-1} and low vibrational energy levels of S_n
- This overlap makes transition between states highly probable
- Internal conversion is a transition occurring between states of the same multiplicity and it takes place at a time scale of 10⁻¹² s (faster than that of fluorescence process)
- The energy gap between S_1 and S_0 is significantly larger than that between other adjacent states $\rightarrow S_1$ lifetime is longer \rightarrow radiative emission can compete effectively with non-radiative emission

6e. Intersystem crossing

- Intersystem crossing refers to non-radiative transition between states of different multiplicity
- It occurs via inversion of the spin of the excited electron resulting in two unpaired electrons with the same spin orientation, resulting in a state with Spin=1 and multiplicity of 3 (triplet state)
- Transitions between states of different multiplicity are formally forbidden
- Spin-orbit and vibronic coupling mechanisms decrease the "pure" character of the initial and final states, making intersystem crossing probable
- $T_1 \rightarrow S_0$ transition is also forbidden $\rightarrow T_1$ lifetime significantly larger than S_1 lifetime (10⁻³-10² s)

I. Principles of fluorescenceFluorescence energy transfer (FRET)

Wavelength

Non radiative energy transfer – a quantum mechanical process of resonance between transition dipoles Effective between 10-100 Å only Emission and excitation spectrum must significantly overlap Donor transfers non-radiatively to the acceptor

1a. Quantum yield of fluorescence

• Quantum yield of fluorescence, Φ_f , is defined as:

 $\Phi_f = \frac{\text{number of photons emitted}}{\text{number of photons absorbed}}$

- In practice, is measured by comparative measurements with reference compound for which has been determined with high degree of accuracy.
- Ideally, reference compound should have
 - the same absorbance as the compound of interest at given excitation wavelength
 - similar excitation-emission characteristics to compound of interest (otherwise, instrument wavelength response should be taken into account)
 - Same solvent, because intensity of emitted light is dependent on refractive index (otherwise, apply correction

$$\frac{\Phi_f^u}{\Phi_f^s} = \frac{I_f^u}{I_f^s} \times \frac{n^2(u)}{n^2(s)}$$

 Yields similar fluorescence intensity to ensure measurements are taken within the range of linear instrument response

1b. Fluorescence lifetime

• Another definition for $\Phi_{\rm f}$ is

where k_r is the radiative rate constant and Σk is the sum of the rate constants for all processes that depopulate the S₁ state.

- In the absence of competing pathways $\Phi_f=1$
- Radiative lifetime, τ_r , is related to k_r
- The observed fluorescence lifetime, is the average time the molecule spends in the excited state, and it is

2a. Characteristics of quantum yield

- Quantum yield of fluorescence depends on biological environment
- Example: Fura 2 excitation spectrum and Indo-1 emission spectrum and quantum yield change when bound to Ca²⁺
 Fura-2 changes in response to varying [Ca2+]
 Indo-1 changes in response to varying [Ca2+]

2b. Characteristics of life-time

- Provide an additional dimension of information missing in time-integrated steady-state spectral measurements
- Sensitive to biochemical microenvironment, including local pH, oxygenation and binding
- Lifetimes unaffected by variations in excitation intensity, concentration or sources of optical loss
- Compatible with clinical measurements in vivo

Courtesy of M.-A. Mycek, U Michigan

3a. Fluorescence emission distribution

- For a given excitation wavelength, the emission transition is distributed among different vibrational energy levels
- For a single excitation wavelength, can measure a fluorescence emission spectrum

Emission Wavelength (nm)

3b. Heisenberg's uncertainty principle

- Values of particular pairs of observables cannot be determined simultaneously with high precision in quantum mechanics
- Example of pairs of observables that are restricted in this way are:
 - Momentum and position
 - Energy and time

3c. Heisenberg's uncertainty principle

• Momentum and position :

• Energy and time:

3d. Effect on fluorescence emission

- Suppose an excited molecule emits fluorescence in relaxing back to the ground state
- If the excited state lifetime, τ is long, then emission will be monochromatic (single line)
- If the excited state lifetime, τ is short, then emission will have a wider range of frequencies (multiple lines)

Emission Wavelength (nm)

Small $\Delta \tau$ – large ΔE

Emission Wavelength (nm)

Fluorescence intensity expression
Fluorescence spectra

1a. Fluorescence intensity

The fluorescence intensity (F) at a particular excitation (λ_x) and emission wavelength (λ_m) will depend on the absorption and the quantum yield:

$$\mathbf{F}(\lambda_{\mathbf{x}},\lambda_{\mathbf{m}}) = \mathbf{I}_{\mathbf{A}}(\lambda_{\mathbf{x}})\phi(\lambda_{\mathbf{m}})$$

where,

 I_A – light absorbed to promote electronic transition ϕ – quantum yield

1b. From the Beer-Lambert law, the absorbed intensity for a dilute solution (very small absorbance)

 $I_{A}(\lambda_{x}) = 2.303I_{o}\varepsilon(\lambda_{x})CL$ where, for $\varepsilon(\lambda_{x})CL << 1$ I_{o} – Initial intensity

 1_0 million meensieg

- ϵ molar extinction coefficient
- C concentration
- L path length

1c. Fluorescence intensity expression

The fluorescence intensity (F) at a particular excitation (λ_x) and emission wavelength (λ_m) for a dilute solution containing a fluorophore is:

$$\mathbf{F}(\lambda_{\mathrm{x}},\lambda_{\mathrm{m}}) = \mathbf{I}_{\mathrm{o}} 2.303 \varepsilon(\lambda_{\mathrm{x}}) \mathbf{CL} \phi(\lambda_{\mathrm{m}})$$

where,

 I_o – incident light intensity C – concentration L – path length ϕ – quantum yield ϵ – molar extinction coefficient

1d. Measured fluorescence intensity If we include instrument collection angle:

$$\mathbf{F}(\lambda_{\mathrm{x}},\lambda_{\mathrm{m}}) = \mathbf{I}_{\mathrm{o}} 2.303 \varepsilon(\lambda_{\mathrm{x}}) \mathbf{C} \mathbf{L} \phi(\lambda_{\mathrm{m}}) \mathbf{Z}$$

where,

Z-instrumental factor

I_o – incident light intensity

 ϵ – molar extinction coefficient

C = concentration

L – path length

2a. Fluorescence spectra

- Emission spectrum
 - Hold excitation wavelength fixed, scan emission
 - Reports on the fluorescence spectral profile
 - » reflects fluorescence quantum yield, $\phi_k(\lambda_m)$

 $\mathbf{F}(\lambda_{\mathrm{x}},\lambda_{\mathrm{m}}) = \mathbf{I}_{\mathrm{o}} 2.303 \varepsilon(\lambda_{\mathrm{x}}) \mathbf{CL} \phi(\lambda_{\mathrm{m}}) \mathbf{Z}$

2b. Fluorescence spectra

- Excitation spectrum
 - Hold emission wavelength fixed, scan excitation
 - Reports on absorption structure
 - » reflects molar extinction coefficient, $\varepsilon(\lambda_x)$

 $\mathbf{F}(\lambda_{\mathbf{x}}, \lambda_{\mathbf{m}}) = \mathbf{I}_{\mathbf{0}} 2.303 \varepsilon(\lambda_{\mathbf{x}}) \mathbf{C} \mathbf{L} \phi(\lambda_{\mathbf{m}}) \mathbf{Z}$

(a)

Excitation Wavelength (nm)

(b)

Emission Wavelength (nm)

2c. Fluorescence spectra

- Composite: Excitation-Emission Matrix
 - » Good representation of multi-fluorophore solution
III. Fluorescence Intensities

Emission Wavelength (nm)

Emission spectrum

Excitation Wavelength (nm)

Emission Wavelength (nm)

Excitation-emission matrix

1. Table

2. EEMs of Epithelial cell suspension

3. EEMs of Collagen

Endogenous	Excitation	Emission		
fluorophores	maxima (nm)	maxima (nm)		
Amino acids				
Tryptophan	280	350		
Tyrosine	275	300		
Phenylalanine	260	280		
Structural proteins				
Collagen	325	400, 405		
Elastin	290, 325	340, 400		
Enzymes and coenzymes				
FAD, flavins	450	535		
NADH	290, 351	440, 460		
NADPH	336	464		
Vitamins				
Vitamin A	327	510		
Vitamin K	335	480		
Vitamin D	390	480		
Vitamin B ₆ compounds				
Pyridoxine	332, 340	400		
Pyridoxamine	335	400		
Pyridoxal	330	385		
Pyridoxic acid	315	425		
Pyridoxal 5'-phosphate	330	400		
Vitamin B ₁₂	275	305		
Lipids				
Phospholipids	436	540, 560		
Lipofuscin	340-395	540, 430–460		
Ceroid	340-395	430–460, 540		
Porphyrins	400-450	630, 690		

FAD, flavin adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; AND(P)H, reduced nicotinamide adenine dinucleotide phosphate.

TABLE III. Measured fluorescence lifetimes and amplitudes for endogenous biological fluorophores *in vitro* (337.1 nm excitation), with comparison to literature values.

Fluorophore <5×10 ⁻⁶ M in PBS	Measured			Literature					
	Lifetime (ns)		Area		Lifetime (ns)		Area		
	$ au_1$	$ au_2$	A_1	A_2	$ au_1$	$ au_2$	A_1	A_2	References
Tryptophan	0.54	4.45	0.33	0.66	0.62	3.20	0.22	0.78	58
					0.53	3.10	0.33	0.67	37
					1.47	2.78	0.72	0.28	55
Elastin	1.63	7.36	0.36	0.64	1.7	8.3			57
					1.3	5.8			57
					1.4	6.7	0.58	0.42	55
					1.12	6.57	0.27	0.73	28
FAD	2.63				2.3				33
					2.85				28
NADH (free)	0.36				0.3				36
					0.26	0.66			59
					0.24	0.58	0.77	0.23	55
					0.4				33
					0.38	1.38	0.97	0.03	28

<u>Ref.</u> J.D. Pitts and M.-A. Mycek: Review of Scientific Instruments, Vol.72, No.7, pp.3061-3072 (2001).

UM BiomedE 599 Biomedical Optics Fall 2003 Prof. Mycek - Optical Instrumentation

Epithelial Cell Suspension Fluorescence intensity excitation-emission

Courtesy of N. Ramanujam

Metabolic Indicators

Metabolism

Redox Ratio: FAD / (FAD+NADH)

Redox ratio ~ Metabolic Rate

Collagen I (gel)

K. Sokolov

Collagen

- It is the major extracellular matrix component, which is present to some extent in nearly all organs and serves to hold cells together in discrete units
- Collagen fluorescence in load-bearing tissues is associated with cross-links, hydroxylysyl pyridoline (HP) and lysyl pyridinoline (LP).
- Collagen crosslinks are altered with age and with invasion of cancer into the extracellular matrix

1. Introduction

2. Components of a spectrofluorometer

3. Description of key components

1. Introduction

- Fluorescence is a highly sensitive method (can measure analyte concentration of 10⁻⁸ M)
- Important to minimize interference from: Background fluorescence from solvents Light leaks in the instrument Stray light scattered by turbid solutions
- Instruments do not yield ideal spectra: Non-uniform spectral output of light source Wavelength dependent efficiency of detector and optical elemens

V. Fluorescence Instrumentation 2. Major components for fluorescence instrument

- Illumination source
 - Broadband (Xe lamp)
 - Monochromatic (LED, laser)
- Light delivery to sample
 - Lenses/mirrors
 - Optical fibers
- Wavelength separation (potentially for both excitation and emission)
 - Monochromator
 - Spectrograph
- Detector
 - PMT
 - CCD camera

Components of the spectrofluorometer (standard fluorescence lab instrument for in vitro samples)
• Xenon lamp (> 250 nm)

- Excitation and emission monochromator Each contains two gratings to increase purity of the light Automatic scanning of wavelength through motorized gratings
- Sample compartment
- Photo multiplier tube

2. Spectrofluorometer schematic

Xenon Source

3a. Xenon light source

- Continuous output from Xenon: 270-1100 nm
- Power typically 200-450 W
- Lifetime of ~2000 hours
- Strong dependence on wavelength

3a. Xenon light source: broad illumination in the near UV-visible range

3b. Monochromator: only a small range of wavelengths are focused at the exit slit determined by angle of light incident on the diffraction grating

Principle of diffraction grating operation

 $\sin \alpha + \sin \beta = 10^{-6} Kn\lambda,$ where K = diffraction order n =# of lines per mm λ = wavelength $D = \beta - \alpha$ = constant

3b. Monochromator – Spectral Resolution Inversely proportional to product of dispersion (nm/mm) of grating and the slit width (mm)

 \sim 5 nm sufficient for fluorescence measurements of biological media

Signal increases with the slit width

3b. Monochromator – Stray light

- Light which passes through monochromator besides that of desired wavelength
- Double grating monochromator (stray light rejection is $10^{-8} 10^{-12}$) but signal is decreased

3b. Monochromator – Signal efficiency

• Grating has a wavelength dependent efficiency

- Can choose the wavelength at which grating is blazed (maximal efficiency)
- Excitation monochromator should have high efficiency in the UV; emission monochromator should have high efficiency in the visible

3c. Photomultiplier tube

- Contains a photocathode: light sensitive material, which yields electrons upon interaction with photons based on photoelectric effect.
- Electrons are multiplied by a series of dynodes
- Provides current output proportional to light intensity

3c. PMT – Linearity response

- Current from PMT is proportional to light intensity
- Under high intensity illumination, PMT will saturate (dynamic range); at low intensity, limited by dark noise
- Excessive light can damage photocathode, resulting in loss of gain and increased dark noise (thermal noise)

3c. PMT – Quantum efficiency

- Quantum efficiency gives the photon to electron conversion efficiency
- Highly dependent on wavelength

3c. Key components – Noise

- Dark current Noise due to thermal generation; increases with temperature and high voltage
- Shot noise proportional to the square root of the signal

VI. Fluorescence measurements

- 1. Instrument non-uniformities
- 2. Excitation wavelength calibration
- 3. Emission wavelength calibration
- 4. Setup parameters for emission spectrum
- 5. Routine experimental procedure
- 6. Collection geometry
- 7. Blank scans
- 8. Typical fluorescence spectrum

1a. Ideal spectrofluorometer

- Light source must yield constant photon output at all wavelengths
- Monochromator must pass photons of all wavelengths with equal efficiency
- The PMT must detect photons of all wavelengths with equal efficiency

LIGHT SOURCE MONOCHROMATOR PMT

1b. Distortions in excitation and emission spectra

- Light intensity from light source is a function of wavelength
- Monochromator efficiency is a function of wavelength
- The PMT does not have equal efficiency at all wavelengths

1c. Calibration

• Correction of variations in wavelength of Xenon lamp and excitation monochromator

Need to do when measuring excitation spectra or emission spectra at multiple excitation wavelengths

• Correction of emission monochromator and PMT Need to do when measuring emission spectra

VI. Fluorescence Measurements 2a. Excitation wavelength calibration

- Excitation spectra are distorted primarily by the wavelength dependent intensity of the light source
- Can use reference photodetector (calibrated) next to sample compartment to measure fraction of excitation light
- The measured intensity of the reference channel is proportional to the intensity of the exciting light

2b. Effect of excitation wavelength calibration

VI. Fluorescence Measurements 3a. Emission wavelength calibration

- Need correction factors
- Measure wavelength dependent output from a calibrated light source
- Standard lamps of known and calibrated spectral outputs are available from the National Institute of Standards and Testing (NIST)
- This measurement is typically done by factory; it is difficult to perform properly with commercial fluorimeter

Calibrated Lamp

Sample Compartment

3b. Emission wavelength calibration procedure

- Measure intensity versus wavelength $(I(\lambda))$ of standard lamp with spectrofluorometer
- Obtain the spectral output data $(L(\lambda))$ provided for the lamp
- Correction factor: $S(\lambda) = L(\lambda)/I(\lambda)$
- Multiply emission spectrum with correction factor

3c. Emission wavelength calibration curve

5. Routine experimental procedures

• Check wavelength calibration of excitation monochromator

Xe lamp scan

- Check wavelength calibration of emission Hg lamp spectrum scan
 monochromator
- Check throughput of spectrofluorometer

Rhodamine standard scan

6a. Collection geometry in sample compartment

- Front face collection is at a 22 degree angle relative to the incident beam; appropriate for an optically absorbing / scattering sample; more stray light
- Right angle collection is at a right angle to the incident light; appropriate for optically transparent sample; less stray light

Front Face

Right Angle

VI. Fluorescence Measurements 6c. Features of right angle illumination

- Appropriate for optically transparent sample
- At high optical densities, signal reaching detector will be significantly diminished

6d. Features of front face illumination

- Appropriate for an optically absorbing / scattering sample
- At high optical densities, light is absorbed near the surface of the cuvette containing the absorber; therefore fluorescence is detectable
- Fluorescence independent of concentration at high optical densities

7. Blank scan

- Blank is identical to sample except it does not contain fluorophore
- Measuring the fluorescence of these samples allows the scattering (Rayleigh and Raman) to be assessed
- In addition, such samples can reveal the presence of fluorescence impurities, which can be subtracted

VI. Fluorescence Measurements 8. Typical fluorescence emission spectrum at 340 nm excitation (the different components) 300000025000001 Rayleigh ($\lambda_{exc} = \lambda_{emm}$) Fluorescence

